
Mathematical Logic
Part Three

Recap from Last Time

What is First-Order Logic?

First-order logic is a logical system for
reasoning about properties of objects.

Augments the logical connectives from
propositional logic with

• predicates that describe properties of
objects,

• functions that map objects to one
another, and

• quantifiers that allow us to reason
about many objects at once.

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

∃ is the existential quantifier and
says “for some choice of m, the following

is true.”

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

∀ is the universal quantifier and says
“for any choice of n, the following is true.”

“All A's are B's”

translates as

∀x. (A(x) → B(x))

Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

∀x. (A(x) → B(x))

If x is a counterexample, it must have
property A but not have property B.

“Some A is a B”

translates as

∃x. (A(x) ∧ B(x))

Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

∃x. (A(x) ∧ B(x))

If x is an example, it must have property
A on top of property B.

The Aristotelian Forms

“All As are Bs”

∀x. (A(x) → B(x))

“Some As are Bs”

∃x. (A(x) ∧ B(x))

“No As are Bs”

∀x. (A(x) → ¬B(x))

“Some As aren’t Bs”

∃x. (A(x) ∧ ¬B(x))

It is worth committing these patterns to memory. We’ll be
using them throughout the day and they form the

backbone of many first-order logic translations.

The Art of Translation

Using the predicates

- Person(p), which states that p is a person, and
- Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means
“every person loves someone else.”

Every person loves someone else

Every person loves some other person

Every person p loves some other person

Every person p loves some other person

“All As are Bs”

∀x. (A(x) → B(x))

∀p. (Person(p) →

p loves some other person

) “All As are Bs”

∀x. (A(x) → B(x))

∀p. (Person(p) →

p loves some other person

)

∀p. (Person(p) →

there is some other person that p loves

)

∀p. (Person(p) →

there is a person other than p that p loves

)

∀p. (Person(p) →

there is a person q, other than p, where

p loves q

)

∀p. (Person(p) →

there is a person q, other than p, where

p loves q

) “Some As are Bs”

∃x. (A(x) ∧ B(x))

∀p. (Person(p) →

∃q. (Person(q) ∧, other than p, where

p loves q

)

) “Some As are Bs”

∃x. (A(x) ∧ B(x))

∀p. (Person(p) →

∃q. (Person(q) ∧, other than p, where

p loves q

)

)

∀p. (Person(p) →

∃q. (Person(q) ∧ p ≠ q ∧

p loves q

)

)

∀p. (Person(p) →

∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)

)

)

Using the predicates

- Person(p), which states that p is a person, and
- Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means
“there is a person that everyone else loves.”

There is a person that everyone else loves

There is a person p where everyone else loves p

There is a person p where everyone else loves p

“Some As are Bs”

∃x. (A(x) ∧ B(x))

∃p. (Person(p) ∧

everyone else loves p

) “Some As are Bs”

∃x. (A(x) ∧ B(x))

∃p. (Person(p) ∧

everyone else loves p

)

∃p. (Person(p) ∧

every other person q loves p

)

∃p. (Person(p) ∧

every person q, other than p, loves p

)

∃p. (Person(p) ∧

every person q, other than p, loves p

) “All As are Bs”

∀x. (A(x) → B(x))

∃p. (Person(p) ∧

∀q. (Person(q) ∧ p ≠ q →

q loves p

)

) “All As are Bs”

∀x. (A(x) → B(x))

∃p. (Person(p) ∧

∀q. (Person(q) ∧ p ≠ q →

q loves p

)

)

∃p. (Person(p) ∧

∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)

)

)

∃q. (Person(q) ∧ p ≠ q ∧

∀p. (Person(p) →

Loves(p, q)

)

)

Combining Quantifiers

Most interesting statements in first-order
logic require a combination of quantifiers.

Example: “Every person loves someone
else”

For every person…

… there is another person …

… they love

∀p. (Person(p) →

Loves(p, q)

)

)

∃q. (Person(q) ∧ p ≠ q ∧

∀q. (Person(q) ∧ p ≠ q →∀q. (Person(q) ∧ p ≠ q →

∃p. (Person(p) ∧

Loves(q, p)

)

)

Combining Quantifiers

Most interesting statements in first-order
logic require a combination of quantifiers.

Example: “There is someone everyone else
loves.”

∃p. (Person(p) ∧There is a person…

… that everyone else …

… loves. Loves(q, p)

)

)

For Comparison

∃q. (Person(q) ∧ p ≠ q ∧

∀p. (Person(p) →

Loves(p, q)

)

)

For every person…

… there is another person …

… they love

∀p. (Person(p) →

Loves(p, q)

)

)

∃q. (Person(q) ∧ p ≠ q ∧

∀q. (Person(q) ∧ p ≠ q →∀q. (Person(q) ∧ p ≠ q →

∃p. (Person(p) ∧

Loves(q, p)

)

)

∃p. (Person(p) ∧

… that everyone else …

… loves. Loves(q, p)

)

)

There is a person…

Every Person Loves Someone Else

Every Person Loves Someone Else

No one here is
universally loved.

There is Someone Everyone Else Loves

There is Someone Everyone Else Loves

This person does
not love anyone

else.

Every Person Loves Someone Else and
There is Someone Everyone Else Loves

∧

∃q. (Person(q) ∧ p ≠ q ∧

∀p. (Person(p) →

Loves(p, q)

)

)

For every person…

… there is another person …

… they love

∀p. (Person(p) →

Loves(p, q)

)

)

∃q. (Person(q) ∧ p ≠ q ∧

and

∀q. (Person(q) ∧ p ≠ q →∀q. (Person(q) ∧ p ≠ q →

∃p. (Person(p) ∧

Loves(q, p)

)

)

∃p. (Person(p) ∧There is a person…

… that everyone else …

… loves. Loves(q, p)

)

)

Quantifier Ordering

The statement

∀x. ∃y. P(x, y)

means “for any choice of x, there's some
choice of y where P(x, y) is true.”

The choice of y can be different every time
and can depend on x.

Quantifier Ordering

The statement

∃x. ∀y. P(x, y)

means “there is some x where for any
choice of y, we get that P(x, y) is true.”

Since the inner part has to work for any
choice of y, this places a lot of constraints
on what x can be.

Order matters when mixing existential
and universal quantifiers!

Time-Out for Announcements!

Problem Set Two

• Problem Set Two went out last Friday.

• There is no checkpoint assignment.

• All problems are due this Thursday at 11:59PM.

• We have some reading recommendations for this
problem set.

• Check out the Guide to Logic Translations for
more on how to convert from English to FOL.

• Check out the Guide to Negations for
information about how to negate formulas.

• Check out the First-Order Translation
Checklist for details on how to check your work.

Problem Set One Solutions

• We’ve just released solutions to Problem Set
One.

• You need to read over these solutions as
soon as possible.

• Why?

• Each question is there for a reason. We’ve
described what it is that we hoped you would
have learned when solving those problems.

• There are lots of different ways of solving these
problems. Comparing what you did against our
solutions, which are just one possible set of
solutions, can help introduce new techniques.

Back to CS103!

Set Translations

Using the predicates

- Set(S), which states that S is a set, and
- x ∈ y, which states that x is an element of y,

write a sentence in first-order logic that means
“the empty set exists.”

Using the predicates

- Set(S), which states that S is a set, and
- x ∈ y, which states that x is an element of y,

write a sentence in first-order logic that means
“the empty set exists.”

First-order logic doesn't have set operators or symbols
“built in.” If we only have the predicates given above, how

might we describe this?

The empty set exists.(

(

(

There is some set S that is empty.(

(

(

∃S. (Set(S) ∧

S is empty.

∧

)

∃S. (Set(S) ∧

there are no elements in S∧

)

∃S. (Set(S) ∧

¬there is an element in S

)

∃S. (Set(S) ∧

¬there is an element x in S

)

∃S. (Set(S) ∧

¬∃x. x ∈ S

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧

there are no elements in S(

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧

every object does not belong to S(

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧

every object x does not belong to S(

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧

∀x. x ∉ S

)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

∃S. (Set(S) ∧ ¬∃x. x ∈ S)

∃S. (Set(S) ∧ ∀x. x ∉ S)

Both of these translations are correct. Just like in
propositional logic, there are many different equivalent

ways of expressing the same statement in first-order logic.

Using the predicates

- Set(S), which states that S is a set, and
- x ∈ y, which states that x is an element of y,

write a sentence in first-order logic that means “two sets are
equal if and only if they contain the same elements.”

Two sets are equal if and only if they have the same elements.

)

)

)

)

)

Any two sets are equal if and only if they have the same

elements.)

)

)

)

)

Any two sets S and T are equal if and only if they have the same

elements.)

)

)

)

)

∀S. (Set(S) →

∀T. (Set(T) →

) S and T are equal if and only if they have the

same

) elements.)

)

)

∀S. (Set(S) →

∀T. (Set(T) →

(S = T if and only if they have the same

elements.))

)

)

∀S. (Set(S) →

∀T. (Set(T) →

(S = T ↔ they have the same elements.))

)

)

∀S. (Set(S) →

∀T. (Set(T) →

(S = T ↔ S and T have the same elements.))

)

)

∀S. (Set(S) →

∀T. (Set(T) →

(S = T ↔ every element of S is an element of T

and

vice-versa)

)

)

∀S. (Set(S) →

∀T. (Set(T) →

(S = T ↔ x is an element of S if and only if x is

an

element of T)

)

)

∀S. (Set(S) →

∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))

)

)

∀S. (Set(S) →

∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))

)

)

∀S. (Set(S) →

∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))

)

)

You sometimes see the universal quantifier pair with the ↔ connective.
This is especially common when talking about sets because two sets are

equal when they have precisely the same elements.

∀S. (Set(S) →

∀T. (Set(T) →

(S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))

)

)

Restricted Quantifiers

Quantifying Over Sets

The notation

∀x ∈ S. P(x)

means “for any element x of set S, P(x)
holds.” (It’s vacuously true if S is empty.)

The notation

∃x ∈ S. P(x)

means “there is an element x of set S
where P(x) holds.” (It’s false if S is empty.)

Quantifying Over Sets

The syntax

∀x ∈ S. P(x)

∃x ∈ S. P(x)

is allowed for quantifying over sets.

In CS103, feel free to use these restricted quantifiers,
but please do not use variants of this syntax.

For example, don't do things like this:

⚠ ∀x with P(x). Q(x) ⚠

⚠ ∀y such that P(y) ∧ Q(y). R(y). ⚠

⚠ ∃P(x). Q(x) ⚠

Let’s take a five minute break!

Expressing Uniqueness

Using the predicate

- WayToFindOut(w), which states that w is a way to find
out,

write a sentence in first-order logic that means
“there is only one way to find out.”

There is only one way to find out. ∀

∀

∀

Something is a way to find out, and nothing else is. ∀

∀

∀

Some thing w is a way to find out, and nothing else is. ∀

∀

∀

Some thing w is a way to find out, and nothing besides w

is a way to find out∀

∀

∃w. (WayToFindOut(w) ∧

nothing besides w is way to find out ∀

)

∃w. (WayToFindOut(w) ∧

anything that isn't w isn't a way to find out ∀

)

∃w. (WayToFindOut(w) ∧

any thing x that isn't w isn't a way to find out ∀∀

)

∃w. (WayToFindOut(w) ∧

∀x. (x ≠ w → x isn't a way to find out)

)

∃w. (WayToFindOut(w) ∧

∀x. (x ≠ w → ¬WayToFindOut(x))

)

∃w. (WayToFindOut(w) ∧

∀x. (x ≠ w → ¬WayToFindOut(x))

)

∃w. (WayToFindOut(w) ∧

∀x. (WayToFindOut(x) → x = w)

)

Expressing Uniqueness

To express the idea that there is exactly one object with
some property, we write that

• there exists at least one object with that property,
and that

• there are no other objects with that property.

You sometimes see a special “uniqueness quantifier”
used to express this:

∃!x. P(x)

For the purposes of CS103, please do not use this
quantifier. We want to give you more practice using the
regular ∀ and ∃ quantifiers.

Expressing Uniqueness

To express the idea that there is exactly one object with
some property, we write that

• there exists at least one object with that property,
and that

• there are no other objects with that property.

You sometimes see a special “uniqueness quantifier”
used to express this:

∃!x. P(x)

For the purposes of CS103, please do not use this
quantifier. We want to give you more practice using the
regular ∀ and ∃ quantifiers.

Mechanics: Negating Statements

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

Negating First-Order Statements

Use the equivalences

¬∀x. A ≡ ∃x. ¬A

¬∃x. A ≡ ∀x. ¬A

to negate quantifiers.

Mechanically:

• Push the negation across the quantifier.

• Change the quantifier from ∀ to ∃ or vice-
versa.

• Use techniques from propositional logic to
negate connectives.

Taking a Negation

∀x. ∃y. Loves(x, y)

(“Everyone loves someone.”)

¬∀x. ∃y. Loves(x, y)

∃x. ¬∃y. Loves(x, y)

∃x. ∀y. ¬Loves(x, y)

(“There's someone who doesn't love anyone.”)

Two Useful Equivalences

The following equivalences are useful when
negating statements in first-order logic:

¬(p ∧ q) ≡ p → ¬q

¬(p → q) ≡ p ∧ ¬q

• These identities are useful when negating
statements involving quantifiers.

• ∧ is used in existentially-quantified statements.

• → is used in universally-quantified statements.

• When pushing negations across quantifiers, we
strongly recommend using the above equivalences
to keep → with ∀ and ∧ with ∃.

Negating Quantifiers

What is the negation of the following statement, which
says “there is a cute puppy”?

∃x. (Puppy(x) ∧ Cute(x))

We can obtain it as follows:

¬∃x. (Puppy(x) ∧ Cute(x))

∀x. ¬(Puppy(x) ∧ Cute(x))

∀x. (Puppy(x) → ¬Cute(x))

This says “no puppy is cute.”

Do you see why this is the negation of the original
statement from both an intuitive and formal
perspective?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))

(“There is a set with no elements.”)

¬∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))

∀S. ¬(Set(S) ∧ ∀x. ¬(x ∈ S))

∀S. (Set(S) → ¬∀x. ¬(x ∈ S))

∀S. (Set(S) → ∃x. ¬¬(x ∈ S))

∀S. (Set(S) → ∃x. x ∈ S)

(“Every set contains at least one element.”)

These two statements are not negations of
one another. Can you explain why?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))

(“There is a set that doesn't contain anything”)

∀S. (Set(S) ∧ ∃x. (x ∈ S))

(“Everything is a set that contains something”)

Remember: ∀ usually goes
with →, not ∧

Recap

Mixing Quantifiers

• Complex logic often requires multiple
quantifiers.

Quantifier Ordering

• Changes the meaning.

Negating Quantifiers

• Keeping preferred connectives and
maximally simplifying.

Next Time

Binary Relations

• How do we model connections between objects?

Equivalence Relations

• How do we model the idea that objects can be
grouped into clusters?

First-Order Definitions

• Where does first-order logic come into all of
this?

Proofs with Definitions

• How does first-order logic interact with proofs?

